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As physiologists seek to better understand how and why metabolism varies,
they have focused on how metabolic rate covaries with fitness—that is, selec-
tion. Evolutionary biologists have developed a sophisticated framework
for exploring selection, but there are particular challenges associated with
estimating selection on metabolic rate owing to its allometric relationship
with body mass. Most researchers estimate selection on mass and absolute
metabolic rate; or selection on mass and mass-independent metabolic
rate (MIMR)—the residuals generated from a nonlinear regression. These
approaches are sometimes treated as synonymous: their coefficients are
often interpreted in the same way. Here, we show that these approaches
are not equivalent because absolute metabolic rate and MIMR are different
traits. We also show that it is difficult to make sound biological inferences
about selection on absolute metabolic rate because its causal relationship
with mass is enigmatic. By contrast, MIMR requires less-desirable statistical
practices (i.e. residuals as a predictor), but provides clearer causal pathways.
Moreover, we argue that estimates of selection on MIMR have more
meaningful interpretations for physiologists interested in the drivers of
variation in metabolic allometry.

This article is part of the theme issue ‘The evolutionary significance of
variation in metabolic rates’.
1. Introduction
Metabolism fascinates biologists for obvious reasons. It is fundamental, because
it sets the rate at which organisms can consume resources and do biological
work; it is interesting because it varies so much across biological scales (i.e.
within-individuals to among species; [1]), and covaries with other components
of the life history [2,3]. The august history of ecophysiology has created a
wealth of data and theory—it is perhaps one of the best-studied traits in
biology, and yet challenges remain.

Physiologists traditionally focused on comparing the metabolic rates of
species that varied in size and lifestyle, seeking to understand broadmacroevolu-
tionary patterns [4,5]. This approach dominated much of the twentieth century.
The focus then shifted to understanding the potential drivers of these patterns,
with a strong mechanistic focus. Various attempts were made to reconcile the
variation we observe with biophysical principles [6,7]. However, even while
there was a strong focus on the use of mechanistic models to explain macroevolu-
tionary patterns, there was a burgeoning discussion of how intraspecific
microevolutionary processes might be responsible [8–15]—a viable, if largely
overlooked, alternative [16].

Meanwhile, the field of evolutionary biology was undergoing a revolution of
its own. From the 1980s onwards, formal approaches to estimating selection, a key
process in evolution, were developed. The most influential of these approaches
was that of Lande & Arnold [17], which provided a way to estimate the strength
and form of selection acting on correlated traits as selection gradients (see box 1
for details). In essence this approach offered a way in which biologists could
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estimate the relationship between traits and fitness in a frame-
work that was directly compatible with evolutionary theory.
Since its development, it has become a core approach in evol-
utionary biology [29,30], and has increasingly been used to
understand how metabolism and fitness covary (figure 1 and
references therein; electronic supplementarymaterial, methods
S1).

We are excited about the growth of studies that seek to for-
mally estimate selection on metabolism, but there are some
issues to be consideredwhen applying this framework tometa-
bolic rate.We recommendPettersen et al. [23] as a starting point
for those interested in why we might wish to integrate micro-
evolutionary theory with physiology more generally. Below
we explore the challenges associated with estimating selection
as it pertains to metabolic rate and mass; and provide some
guidance on the pros and cons of different approaches.
s.R.Soc.B
379:20220491
2. The problem: describing selection on body
mass and metabolic rate

Metabolism is the cumulative product of various biochemical
processes that ultimately combine to determine the rate at
which organisms power their biological work. Metabolism
therefore depends strongly on body mass—the greater the
mass of the organism, the greater the sum total of metabolic
processes required to sustain it [1,3]. Considerations of meta-
bolic rate usually include implicit or explicit considerations
about body mass. The traditional framework for describing
the relationship between mass and metabolism is metabolic
scaling [31]: which estimates the exponent of the allometric
(nonlinear) relationship between mass and metabolic rate;
and ‘metabolic level’, the coefficient of the power function
that describes the mass-independent component of metabolic
rate (figure 2a in box 2). Together, metabolic level, metabolic
scaling and body mass describe most of the variation in
absolute metabolic rate.

It is difficult to think about how selection acts on
metabolism without also considering mass. For example, has
metabolism actually evolved if a population responds to selec-
tion for increased bodymass alone?On the one hand, themean
metabolic rate of the population is likely to increase through
the indirect effects of body mass on metabolism. On the
other hand, neither scaling nor level have changed: thus, our
standard descriptors of metabolism also remain unchanged.
From this perspective, most physiologists would probably
regard the metabolic phenotype to be the same after the
evolutionary change in mass. However, metabolic level and
scaling are population-level parameters, not individual traits;
whereas selection analyses seek to link the traits of individuals
to their performance (see box 1 for details). When seeking
to measure the phenotypic covariance between fitness and
individual traits, the question then becomes, which traits
should one use to test hypotheses about how selection
shapes metabolic scaling and level?

Were mass not to vary at all, the identification of the appro-
priate metabolic trait would be simple: we could just measure
selection on absolute metabolic rate. But mass always varies
within species, at least a little, and is also a strong determinant
of fitness [30]. As such, describing the fitness effects of meta-
bolic rate and body mass becomes more complex. Absolute
metabolic rate actually contains at least two components:
the metabolic rate that is entirely attributable (and is thus
synonymous with) body mass; and an extra component that
occurs independently of the relationship with mass (figure 2b
in box 2). Both of these traits are interesting, but we would
argue that distinguishing between them is essential in order
to make reasonable inferences about how metabolism will
evolve.

To illustrate, evolutionary physiologists typically want to
understand why metabolism varies among individuals,
populations or species, after accounting for differences in
body mass. That is, physiologists are specifically interested
in the drivers of variation in metabolic level, and hence selec-
tion on mass-independent metabolic rate. In other words, we
are not usually interested in why a whale has an absolutely
higher metabolic rate than a mouse—greater masses mean
greater total metabolic work [1]. However, physiologists are
interested in the evolutionary processes that led to whales
having relatively lower metabolic rates than mice. That is,
they are also interested in the evolutionary drivers of meta-
bolic scaling: how mass, mass-independent metabolism and
their covariance affect fitness [32]. On balance therefore,
most physiologists are specifically interested in understand-
ing the drivers of evolution in metabolic rate while also
considering mass. At least three different approaches have
been used to achieve this goal (figure 1).

One approach to account for the effects of mass on
metabolism is to simply divide metabolic rate by mass—a
metric called mass-specific metabolic rate (MSMR). MSMR
has been widely criticized as it does not estimate metabolic
rate relative to mass well when the relationship between
mass and metabolism is not isometric [33–35], which is a rare
case. Fortunately, few studies have used MSMR to investi-
gate the relationship between metabolic rate and fitness
(figure 1a), and we recommend that this approach be
abandoned in future studies.

Alternatively, values of mass-independent metabolic rate
(MIMR) can be obtained by extracting the residuals from a non-
linear regressionofmetabolic rate andbodymass ([36]; see box 2
fordetails). This approachyieldsvaluesofMIMRthat span from
positive to negative: positive values indicate an individual has a
higher than average metabolic rate for its mass; negative values
indicate the converse. Thismethod is intuitively attractive, since
it provides an indication of whether metabolic rate is higher or
lower than expected based on allometry alone. As we will
argue, we believe MIMR provides the greatest congruence
between how physiologists think about mass-independent
metabolic rate and how the trait is derived.

Most studies attempting to disentangle the fitness effects of
bodymass frommetabolism have estimated selection either on
absolute metabolic rate or MIMR (figure 1): and of both, absol-
ute metabolic rate is used most frequently. Researchers tend to
interpret findings from these two approaches in the sameway:
for example, positive linear selection on absolutemetabolic rate
is interpreted as equivalent to positive linear selection on
MIMR (see the electronic supplementary material, references
in table S2 and methods). Given the dominance of these two
approaches in the literature, and the tendency for researchers
to think of them as providing equivalent information, it is
important toverifywhether they should actually be interpreted
in the same way.

Figure 4 shows that for identical underlying fitness
relationships, the estimates of selection on body mass and
absolute metabolic rate differ from those on MIMR and
mass, particularly when body mass and absolute metabolic



Box 1. A multiple regression approach to estimating selection

Selection describes the covariance between phenotype and fitness, where the fitness of an individual is determined by its
contribution of offspring to the next generation [18]. Given this definition, physiologists seeking to estimate selection on
metabolic rate should strive to measure survival and lifetime reproductive output whenever possible [1]. For selection to
occur, there must be at least some phenotypic variation in the trait(s) of interest (in our case, metabolism); and variation
in fitness among individuals (opportunity for selection). When these traits are heritable, selection will alter the distribution
of phenotypes across generations—that is, traits will evolve [18,19].

Selection is most commonly estimated as selection gradients: the coefficients (slopes) obtained from multiple regressions
[17]. This approach involves regressing relativized fitness against standardized values of phenotypic trait(s) to obtain stan-
dardized estimates of selection that are directly comparable among studies. Phenotypic values are typically standardized to a
mean of 0 and variance of 1, and fitness relativized by the mean (but see [20] for discussions about the inferential implications
of relativizing within or among environments). Selection can take three general forms: linear, quadratic and correlational, and
these may operate in isolation or combination to determine the response to selection. We briefly outline the steps involved in
estimating gradients for the different forms of selection below using two traits, but this approach can easily accommodate
more traits if necessary.

Directional (or linear) selection occurs when traits (zi) covary linearly with fitness (ω), and is fitted as a linear regression:

v ¼ aþ b1z1 þ b2z2 þ 1, ð1:1Þ
where α is the intercept from the regression; β1 is the linear selection gradient (coefficient) giving the direction and magni-
tude of selection acting on trait 1; β2 is the linear selection gradient for trait 2; and ε is the error term from the regression. If a
trait is sufficiently heritable, and is not constrained by other traits that are also correlated with fitness, persistent positive or
negative directional selection (determined by the sign of β) should increase or decrease the trait mean of a population,
respectively.

By contrast, quadratic selection is a form of nonlinear selection that is defined by a curvilinear relationship between
phenotype and fitness. Quadratic selection is fitted by including second-order polynomials in the regression equation:

v ¼ aþ b1z1 þ b2z2 þ g1z
2
1 þ g2z22þ 1, ð1:2Þ

where γ1 is the quadratic selection gradient (coefficient) giving the direction and magnitude of quadratic selection acting on
trait 1; and γ2 is the quadratic selection gradient for trait 2 (other terms are defined above). Note that quadratic selection gra-
dients (and their errors) must be doubled [21]. Under the special case that quadratic selection occurs without any directional
selection (i.e. β = 0), quadratic selection is said to be stabilizing (when γ is negative) or disruptive (when γ is positive); other-
wise these are referred to as concave or convex selection, respectively. Stabilizing (or concave) selection occurs when fitness is
maximized at a single trait value and extreme phenotypes are disfavoured: thus, evolution should decrease phenotypic var-
iance in a population. By contrast, disruptive (convex) selection favours extreme phenotypes, such that phenotypic variance
should increase.

Another form of nonlinear selection is correlational selection, which occurs when combinations of two traits interact to
affect fitness, and is estimated by the cross-product coefficient (δ), or interaction term, between two traits in the multiple
regression:

v ¼ aþ b1z1 þ b2z2 þ g1z
2
1 þ g2z22þ dz1,z2 þ 1: ð1:3Þ

Correlational selection alters trait correlations across generations, and again its coefficient (δ) can be positive or negative.
Positive correlational selection occurs when higher values of both traits (and lower values of both traits) yield higher fitness,
such that positive covariances between these traits should evolve. By contrast, negative correlational selection occurs when
fitness is greater for combinations of high and low trait values, such that selection should generate negative covariances
between traits. It is worth noting that relatively fewer studies estimate correlational selection (cf. linear and quadratic selec-
tion: see [22] and figure 1b). Correlational selection between mass and metabolism can yield intriguing insights about the
evolutionary drivers of metabolic allometry [1], however, and we join others in encouraging that experimenters explore
this form of selection more often in future studies [23].

Lande & Arnold [17] showed that ordinary least-squared (OLS) regression reliably estimates selection gradients irrespec-
tive of the underlying distribution of fitness or phenotypic traits—but testing the statistical significance of these gradients
with an OLS approach is sometimes inappropriate [24]. As such, selection gradients are typically estimated from OLS
regressions, while statistical tests are performed using generalized linear models that most appropriately describe the
distribution of the underlying data [25,26].

Both parameter estimation of selection gradients, and their statistical tests, are performed via sequential model build-
ing (see [27] for a detailed guide). To begin, one estimates baseline performance in an intercept only model, then
sequentially adds additional terms that describe the different forms of selection: starting with linear, then quadratic and
finally correlational selection (as demonstrated in equations (1.1)–(1.3)). At each step, the significance of selection is deter-
mined by comparing the fit of the subsequent model to its predecessor using likelihood ratio tests. We note that this
approach can also be expanded to test for differences in selection among environments, and we refer readers to [27,28]
for details.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

379:20220491

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 J

an
ua

ry
 2

02
4 



(a)

13
31

44

absolute

selection analyses
other studies

total

correlational

quadratic

linear

MIMR MSMR

4
13

17

0
5

5

0.65 0.47 0.18

0.94 0.71 0.24

1.00

all absolute MIMR

0.76 0.24

(b)

Figure 1. Qualitative literature map of the studies that have estimated the
relationship between metabolic rate and fitness (as survival or reproduction;
see the electronic supplementary material, methods S1). (a) The number of
studies that have used different analytic approaches (selection approach or
other; as rows) and metrics of metabolic rate (as columns): absolute meta-
bolic rate, mass-independent metabolic rate (MIMR) and mass-specific
metabolic rate (MSMR). (b) The proportion of studies that have used the
Lande & Arnold [17] approach (17 studies total) to quantify selection gradi-
ents for the different forms of selection (rows; see box 1 for definitions) using
different metabolic traits (columns; first column shows all 17 studies
together). In both panels, darker colours indicate that more studies have
used a particular approach; lighter colours indicate fewer studies have used
that approach.
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rate are highly collinear (see the electronic supplementary
material, methods, for details of our simulation approach).
The estimates of selection can even differ in sign between
the two approaches (figure 4c,d). Importantly then, these
two approaches are not synonymous, and their results
should therefore not be interpreted as such. Similar con-
clusions have been drawn from analogous studies of
relative versus absolute brain size [37].

Note that this difference in coefficients between the
approaches (despite the same fitness relationships) does not
mean that either approach is inherently wrong or biased: rather,
these differences arise because they estimate selection on two
different traits [38]. Thus counterintuitively, a study that finds
strong positive linear selection on both body mass and MIMR
actually finds the same result as a study that reports strong nega-
tive linear selection onbodymass andpositive linear selectionon
absolute metabolic rate (figure 4). It is therefore inappropriate to
regard these two approaches as interchangeable—two studies
could find similar coefficient estimates for each metabolic trait,
but the relationships between fitness, mass and metab-
olism could be different between each study. Thus, the field
should at least recognize that the different approaches produce
different estimates, and perhaps ideally settle on one particular
approach.Wewill deal with the pros and cons of each approach
below so that researchers can make informed choices about
which traits to analyse in the future.
3. Mass-independent metabolic rate versus
absolute metabolic rate: statistical rigour
versus biological utility

Using MIMR as a phenotypic trait within a selection frame-
work means we are using a statistical output (residuals)
from one analysis as an input for another. Within the litera-
ture, there is a view that using residuals is suboptimal and
should not be favoured [39,40]. Much of this debate pertains
to the use of residuals as dependent variables in downstream
analyses, and are irrelevant to the specific use we advocate
for here. Nevertheless, there are still statistical and practical
downsides to this approach that are worth highlighting.

First, we acknowledge that using residuals as trait values
of MIMR essentially gives primacy to the effect of mass (or
entirely mass-dependent metabolism) on fitness [41]. We
think accounting for mass in this way is appropriate given
there are well-established relationships between size and
mortality rate, and size and fecundity [42,43]—larger individ-
uals often have higher fitness than smaller conspecifics.
Physiologists tend to be interested in whether metabolism
affects fitness over and above the effects of body mass.
Nevertheless, this primacy should be acknowledged.

Second, calculating MIMR as the residuals from the
relationship between body mass and absolute metabolic rate
means that MIMR contains multiple components. It contains
the true variation in metabolism independent of body mass
(the trait we are interested in); as well as measurement error
[44,45]; and error generated from the statistical estimation pro-
cedure used to obtain these residuals. Yet using MIMR in a
selection analysis assumes that all of the variation is biologi-
cally ‘real’. Importantly, this error is not propagated through
the selection analysis, and poses a non-trivial issue: all else
being equal, this additional, unquantified error will result in
the systematic under-estimation of selection coefficients [22],
and increases the risk of Type II errors in their statistical tests.

Minimizing measurement error therefore takes on new
importance when residuals (i.e. MIMR) are included as a
predictor in selection analyses. One way to minimize
measurement error is by taking repeated measures of meta-
bolic rate for each individual (technical replicates). While
technical replication may seem onerous, advances in high-
throughput metabolic phenotyping have made this more
accessible: thousands of independent metabolic rates can be
measured within just a few days [46–48]. These technical
replicates can then be incorporated into selection analyses
to better decompose MIMR into error and ‘true’ MIMR.
While a common approach is to average technical replicates
and use means as trait values [49], others have shown this
approach is insufficient for correcting error-generated biases
in selection gradients [22,50]. Rather, we advocate that techni-
cal replicates of metabolic rate first be converted into multiple
estimates of MIMR for each individual in the dataset; and
these then be incorporated into selection analyses using
more advanced techniques such as multivariate mixed-effects
models [51], or error-in-variables approaches [22,50]. While
error-in-variables approaches provide more robust estimates
of selection, they are also computationally challenging;
thus, mixed-effects models may be a more pragmatic solution
[22]. Importantly, both approaches are compatible with
a Bayesian framework, and so provide solutions for
propagating uncertainty in the estimated parameters [52,53].

Using absolute metabolic rate avoids some of the pro-
blems described above, and for these reasons alone, one
might favour it. However, absolute metabolic rate also has
its issues. First, when body mass and absolute metabolic
rate are highly collinear, coefficient estimates tend to be less
precise (figure 4). As Morrissey & Ruxton [38] have pointed
out, these estimates are still unbiased, and on this basis,
argued that collinear predictors are a non-problem. Neverthe-
less, analysing collinear predictors does result in less precise



Box 2. Calculating mass-independent metabolic rate: nonlinear versus log–log linear regressions

We advocate for those interested in studying selection on metabolic rate to first calculate mass-independent metabolic rate
(MIMR). Here, we briefly walk through the procedure for calculatingMIMR (figure 2), and illustratewhy a nonlinear regression
approach is best (figure 3; see also the electronic supplementary material, methods S1). Consider the realistic, but hypothetical,
allometric relationship between body mass and metabolic rate shown in figure 2a. Each coloured point represents a different
individual. While the general relationship between mass and metabolism is well represented by the blue line where metabolic
rate scales with body mass at b = 0.75, individuals deviate from that overall relationship (figure 2b). For example, the red dot
indicates an individual that has a higher metabolic rate than would be expected based on its mass (i.e. a positive value of
MIMR), whereas the green individual has a lower metabolic rate than would be expected (i.e. a negative value of MIMR).
After fitting a nonlinear regression, we can easily extract the residuals for each individual (figure 2b). Those residuals represent
MIMR and importantly, those values show no covariancewith body mass (figure 2c). We can then take thoseMIMR values and
relate them to the fitness of those individuals, shown in this case as a simple positive linear relationship between MIMR and
fitness (figure 2d).

When using this residual approach to estimate MIMR, it might be tempting to fit a log–log analysis with a linear
regression rather than a nonlinear regression in natural space (figure 3). Log–log analyses have the virtue of allowing
linear models and are useful for counteracting heteroscedacity (figure 3a). Using a log–log analysis to generate residuals
is inappropriate, however, because residual deviance in log–log space will depend on x (in this case body mass), such
that two individuals with the same residual value in log–log space but very different body masses, will have different
residual values when MIMR is calculated in natural (nonlinear) space (though these will be in same direction). The top
panel in figure 3b shows the relationship between MIMR values estimated using residuals from a nonlinear (shown on
the x-axis) and log–log linear regression (shown on the y-axis). As shown, many of these residual values show no relation-
ship. In particular, small deviations from residuals of zero are exaggerated, and extreme values of residuals are diminished,
when extracted from a log–log (relative to nonlinear) analysis. Consequently, if we consider a scenario where there is a
simple, positive linear relationship between MIMR and fitness, using residuals from a log–log linear regression results in
a much poorer fit than those obtained from a nonlinear regression (figure 3b). Overall then, we recommend extracting
MIMR values by calculating the residuals from nonlinear regressions.

(a)

body mass

MR = aMb

fi
tn

es
s

MIMR

M
IM

R
ab

so
lu

te
 M

R

body mass body mass

(b)

(d)

(c)

Figure 2. A schematic of the approach for extracting values of MIMR to use as trait values in a selection analysis.
(a) shows a hypothetical allometric relationship (solid navy line) between absolute metabolic rate (MR) and body mass
(M), where each colour represents data from a different individual. The exponent (b) that describes the slope of this relation-
ship represents metabolic scaling; while the intercept (a) represents metabolic level—the descriptor of the average MIMR of
the population. (b) The residual deviation (thin solid lines) in the absolute MR of each individual (the coloured points) from
the overall allometric relationship (solid navy line). The schematic shows how the absolute MR of individuals (coloured dots)
can be decomposed into mass-independent (i.e. the residuals; thin solid lines) and mass-dependent (coloured dotted lines)
components. (c) The residuals extracted from the allometric relationship shown in the previous panels—these residuals
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provide estimates of MIMR. Note that these are plotted relative to the average MR for an individual of a given body mass (i.e.
MIMR values of 0; black dotted line). (d ) shows how those estimates of MIMR obtained from the preceding panels can then
be plotted against fitness to estimate selection on MIMR (here presented as a hypothetical linear relationship that describes
positive directional selection on MR: see box 1 for definition).

(a)
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log(M
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Figure 3. (a) Schematic showing how the residuals obtained from the same simulated relationship between mass and MR
differ when calculated on a natural scale using nonlinear regressions (blue), or from analyses performed on a log–log scale
(orange). (b) Residuals calculated from log–log analyses systematically mis-estimate those obtained on a natural scale (in
purple). Hence the relationship between values of MIMR and fitness is artificially noisier when residuals are calculated
from log–log (orange) relative to nonlinear (blue) analyses.
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estimates, such that Type II errors are more likely when inter-
preting their statistical tests [24,41]. While that imprecision
does not generate models that arewrong on average [38], prag-
matically it does mean that any one estimate of selection is less
likely to represent the underlying biology, so researchers may
infer that selection is weaker than it actually is. Morrissey &
Ruxton [38] argue that imprecise coefficient estimates are
only a problem if one bases model selection procedures on
these estimates—pragmatically, researchers tend to make con-
clusions based on the significance of coefficient estimates so,
to us at least, imprecise estimates remain a non-trivial problem.

Trait collinearity may also be problematic given that one is
often interested in using selection coefficients in a predictive
framework—the goal is to predict how traits will change
owing to selection [18,19]. The predictive capacity of models
that contain highly collinear traits is contingent upon this col-
linearity remaining unchanged from one generation to the
next [24]. There are clear paths by which selection is expected
to alter covariances (collinearity) between traits ([17–19]; see
also box 1). Hence predictions based on collinearities that
change are less reliable.Whether these downsides are sufficient
to avoid the use of absolute metabolic rate is debatable; but
they should at least be considered. For further discussion of col-
linear traits in the context of selection, Mitchell-Old & Shaw
[24] and Morrissey & Ruxton [38] are, in our view, a useful
place to start.

Ultimately, we favour the use of MIMRover absolute meta-
bolic rate not because of the statistical issues associated with
either approach—in fact, on balance, MIMR may be less desir-
able from a statistical perspective. Rather, we favour MIMR
becausewe believe it is ultimately the biological trait of interest
that physiologists are seeking to understand. Selection on
MIMR has an intuitive and direct interpretation. For example,
assuming there is sufficient genetic (co)variation [51], negative
directional selection on MIMR will decrease metabolic level
and increase metabolic scaling slightly. This change in both
level and scaling is counterintuitive but occurs because shifts
in the mean value of y (in this case, metabolic rate) changes
both the coefficient and exponent of any power function.
Likewise, stabilizing selection on MIMR implies that there
are strong fitness penalties for having a substantial MIMR—
individuals with metabolic rates that are strictly mass
dependent will have higher fitness, whichmay imply variation
in metabolic rate is constrained to show strict allometric
relationships. These are intuitive interpretations.

By contrast, were one to only estimate selection on absolute
metabolic rate and mass, one’s capacity to make reasonable
biological inferences is more limited. Absolute metabolic rate
provides no information about the relative proportion of
metabolism that is mass-dependent or mass-independent.
This limits our ability to make inferences about the causal
pathways throughwhich absolutemetabolic rate affects fitness,
as well as how selection on absolute metabolic rate will alter
metabolic allometry ([54]; see also figure 5). To illustrate,
consider three scenarios through which selection on absolute
metabolic rate can causally alter metabolic allometry: we
have deliberately made them coarse for heuristic purposes. In
the first scenario, metabolic rate and mass are two distinct
traits just like any others—they each undergo evolutionary
change according to selection and their genetic (co)variance
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(figure 5a). Under this scenario, there is no causal relationship
between mass and metabolic rate—both are free to vary com-
pletely independently. Alternatively, metabolic rate could
be entirely a function of mass—variation in metabolic rate is
completely driven by the allometric relationship, thus
even if metabolic rate has some relationship with fitness, it
cannot evolve independently of mass. The first scenario views
drivers of metabolic rate entirely through a quantitative gen-
etics lens, while the second treats metabolic rate as a
physiologically constrained trait: neither is likely, but both
are possible. A third, more realistic scenario is intermediate to
these extremes—mass has a strong effect on metabolism but
selection can alter metabolism independently, at least to some
extent. Assuming there is sufficient genetic variation in both
mass and metabolism in all three scenarios, we can explore
simple predictions of how mass and metabolism might
change across generations (see the electronic supplementary
material, methods S1 for details of our approach).

We considered an extremely simplified case of linear
selection for increased mass and decreased absolute meta-
bolic rate with abundant genetic variation in each trait (and
assuming no genetic correlation between them). We find
that for the ‘no constraint’ scenario, metabolic level is pre-
dicted to decrease, and metabolic scaling is predicted to
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increase (figure 5b,c). While for the ‘constrained’ scenario, we
predict no change in scaling nor level. Evolutionary
responses in the intermediate scenario sit between these
two extremes. The degree to which metabolic rate is actually
constrained to vary with mass thus strongly determines the
evolutionary dynamics of metabolic allometry: the same
selection will yield very different predictions of how these
traits will evolve depending on our assumptions regarding
causal pathways.

Physiologists seek to understand the drivers of metabolic
allometry, but unfortunately, the extent to which metabolism
is (un)constrained by mass is unknowable using an absolute
metabolic rate approach. We need to estimate MIMR to
access this information. Inferences based on selection ana-
lyses of mass and absolute metabolism are therefore less
accessible, in our view, because of the ‘black box’ that is the
causal relationship between mass and absolute metabolism
(figure 5a). More prosaically, it is harder to think about
absolute metabolism and mass simultaneously and make
reasonable inferences about their dynamics when their rela-
tive mass-(in)independent components remain enigmatic.
These difficulties are only compounded were one to think
about more complex scenarios involving nonlinear selection
(see box 1 for definitions). By contrast, we can make more
straightforward inferences from estimates of selection on
MIMR: this approach explicitly acknowledges the synon-
ymous nature of mass and mass-dependent metabolism,
and delineates these from MIMR, with an unambiguous
causal pathway. Selection on these components together
permits clear and simple predictions about the metabolic
allometries we seek to understand.
4. Conclusion
Overall, we believe that MIMR represents a valid and
pragmatic solution to estimating selection on the various com-
ponents of metabolic rate while accounting for mass. We
believe that this metric reveals the otherwise-hidden physio-
logical information of interest [55,56]. Others have also
highlighted the evolutionary significance of residual phenoty-
pic vicariance, particularly as it relates to plasticity in
behaviour, personality and physiology [56,57]. We agree that
such residual within-individual variation is interesting, and
is particularly relevant to understanding the evolution of
plasticity in metabolic rate [58]. Here, we argue that there is
also biologically meaningful information in the residual var-
iance of metabolic allometry (i.e. MIMR)—and that this
too, represents a component of phenotypic variance that is
heritable andmay itself evolve [59,60]. In other fields, research-
ers have similarly advocated for using residuals as predictors
under specific scenarios when they provide better access
to the traits of interest, despite the statistical downsides
[37,41,61]. However, we recognize that othersmay take a differ-
ent view. Regardless, we would suggest that researchers keep
clear in their minds that estimates of selection based on differ-
ent metabolic traits are not synonymous, and require different
biological interpretations.
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We hope to have provided an accessible guide for robust
estimates of selection on metabolic rate that better integrates
the traditions of metabolic physiology with formal quantitat-
ive genetics. It seems to us that we are entering an exciting
time for evolutionary physiology, where technological inno-
vations allow estimates of metabolic rates at unprecedented
scales (e.g. [46–48]). The convergence of this technology
with sophisticated analytical tools from evolutionary biology
[22,50,51] will allow for new and important insights into
the evolutionary causes and consequences of variation in
metabolic rate.
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