How and Why Does Metabolism Scale with

Body Mass?

Most explanations for the relationship between body size and metabolism

invoke physical constraints; such explanations are evolutionarily inert, limiting

their predictive capacity. Contemporary approaches to metabolic rate and life

history lack the pluralism of foundational work. Here, we call for reforging of

the lost links between optimization approaches and physiology.
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Organisms vary in size to an almost impossible degree.
The heaviest animal is the blue whale Balaenoptera
musculus, with a maximum recorded weight of 190
tonnes (1). The smallest vertebrates include a New
Guinea frog, Paedophryne amauensis (adult length
~7 mm; Ref. 2), and a fish, Paedocypris progenetica
(adult length ~8 mm; Ref. 3), The smallest microbes
weigh 0.1 pg. Living organisms therefore span at
least a 10%'-fold size range. Size ranges for any one
species are narrower, but still impressive. Giant
clams Tridacna gigas, for example, vary by >11
orders of magnitude, from 100-um eggs that weigh
micrograms to 200-kg adults. Given the vast scales
involved, it is hardly surprising that the influence of
size has been well studied (4-9). Perhaps the most
studied size relationship is the allometric (nonpro-
portional) scaling relationship between an animal’s
size and its rate of energy use (metabolic rate).

The earliest attempts to link metabolic rate and body
mass were rooted in assumptions about the physical
principles that govern heat exchange rather than
actual measurements. In a series of presentations to
the Royal Academy of Medicine in Paris in the 1830s,
Sarrus and Rameaux suggested that, because the
heat produced by an animal as a by-product of metab-
olism must be lost through the body surface, the rate
at which it produces heat (metabolic rate) should be
proportional to the surface area over which the heat is
lost, rather than body mass (10). Thus, metabolic rate
was thought to scale as a power function of mass, with
a scaling exponent of ~2/3 (i.e., metabolic rate was
predicted to be proportional to mass®3).

In 1883, Rubner (11) reported that the rate of heat pro-
duction of dogs scaled in proportion to their body sur-
face area, and this two-thirds power scaling of metabolic
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rate came to be known as Rubner’s surface law. In 1932,
Kleiber (12) and Brody and Proctor (13) independently
reported that the scaling exponent of metabolic rate of
endotherms (birds and mammals) was >2/3, and a value
of ~3/4 was subsequently adopted (in part because it
simplified calculations undertaken with a slide rule; Ref.
8). In 1960, Hemmingsen (14) expanded the observation
of three-quarter power scaling to a wide range of spe-
cies. But in the decades that followed, it became clear
that 3/4 scaling is not universal. Some studies continued
to report a scaling exponent close to 2/3 for the basal
metabolic rate of endotherms into the early 2000s (15—
20), for example, whereas other studies reported a
range of other values (10, 12, 13, 21-33). It has also been
shown that scaling relationships may not follow a strict
power function both within (e.g., Refs. 34, 35) and among
(e.g., Refs. 26, 36—38) species.

The most reliable finding from more than a century of
study is that metabolic rate almost always scales hypo-
allometrically with body mass (i.e., it exhibits a scaling
exponent < 1), but there is no single “universal” scaling
exponent that defines this relationship (e.g., Refs. 39,
40). Some consistent patterns have also emerged. For
interspecific (among species) comparisons, the basal
metabolic rate of endotherms (birds and mammals)
scales with a shallower exponent than the standard
metabolic rate of ectotherms (e.g., Refs. 33, 41-43).
The maximum metabolic rate of endotherms scales
with a steeper exponent than basal metabolic rate
(29, 44-48), but the exponents of maximum and stand-
ard metabolic rate are similar for ectotherms (49). When
metabolism is measured in the field, it tends to scale
more steeply than (laboratory measured) standard met-
abolic rate in reptiles (50, 51), but no such differences
occur in endotherms (47, 51-54). A striking deviation
from hypoallometric scaling is observed among prokar-
yotes and protists, for which metabolic rate scales
hyperallometrically (exhibits a scaling exponent > 1) or
isometrically with mass, respectively (43, 55).

For the intraspecific (within species) scaling of meta-
bolic rate with body mass, the average scaling exponent
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of metabolic rate is strikingly close to 3/4 (56, 57), but
there is considerable variation about this value, which is
driven by diet, light intensity, oxygen availability, pH, sa-
linity, starvation, temperature, water availability, and
inbreeding, among others (reviewed in Refs. 58, 59).
Most recently, the scaling exponent of metabolic rate
has been shown to be negatively associated with
growth performance and positively related to maximum
reproduction rate (57). Some of the variation in the

Mass range

Mass range

Mass range

Metabolic scaling exponent

scaling exponent is certainly attributable to measure-
ment error, such that exponents estimated with larger
sample sizes and wider mass ranges are more precise
(42, 57, 60). Examination of a recent dataset (57) also
provides evidence of substantial publication bias: there
is a conspicuous absence of hyperallometric scaling
exponents for datasets with small mass ranges and
also an absence of very shallow scaling exponents
(FIGURE 1). These absences question the representa-
tiveness of published exponents collected for mass
ranges smaller than ~1 order of magnitude, because
these published values are likely to represent a non-
random subset of the real values.

The consensus from the above is that, at least for
metazoans, metabolic rate usually scales hypoallo-
metrically across a wide range of physiological states
and environmental contexts. But why such allometric
scaling arises so frequently and consistently in biology
has been hotly debated for decades with no clear re-
solution (39, 40, 58, 72-74).

Why Does Metabolic Rate Scale with
Body Mass?

Physical Geometric Constraints

Size is a physical property as well as a biological one.
In trying to understand how size affects the function of
organisms, classical approaches often emphasize the
role of physical properties. In an early exploration of
the relationship between size and function, Galileo
argued in 1638 (75, 76) that the mass of an animal’s
skeleton must increase disproportionately with body
mass, because the cross-sectional area of a bone
must increase in proportion with the weight that it

FIGURE 1. Funnel plot showing the relationship
between the intraspecific scaling exponent of me-
tabolism and the mass range over which it was
determined

Funnel plot showing the relationship between the intra-
specific scaling exponent of metabolism and the mass
range over which it was determined for published (A,
blue) and unpublished (B, red) data. (C shows both the
published and unpublished data.) Published scaling expo-
nents were taken from a recent compilation (57).
Unpublished scaling exponents were calculated from raw
data for species of insect, fish, amphibian, reptile, bird,
and mammal provided in publications associated with our
own research (open red symbols) (Refs. 33, 61, 62, 64—
68, 145) and the wider literature (filled red symbols) (52,
69-71). The vertical dashed line represents a scaling
exponent of 0.75, and the shaded areas delimit the 2.5th
and 97.5th percentiles of the distributions of scaling
exponents estimated for 50 mass ranges from 0.01to 10
orders of magnitude. Relationships were simulated by
generating a dataset with 17 data points (the median sam-
ple size in the published dataset) spanning the appropri-
ate mass range and a mean metabolic scaling exponent
of 0.75 and then adding normal deviates with a mean of O
and a SD of either 0.3 (darker gray), 0.2 (intermediate
gray), or 0.1 (lighter gray) units on a logyo scale. Each com-
bination of mass range and residual standard deviation
was simulated 100,000 times.

PHYSIOLOGY e Volume 38  November 2023 e www.physiologyonline.org

267


http://www.physiologyonline.org

268

supports. D’Arcy Thompson (77) similarly placed a
heavy emphasis on physical explanations for size-
function relationships. Such an emphasis is under-
standable, because the vast scales over which life
exists result in very substantial changes in the dimen-
sions of organisms, and these may impose strong con-
straints on function. Accordingly, multiple theories
have assumed that physical constraints dictate the
size dependence of metabolic rate. Below we deal
with each very briefly (for a fuller account, see the
papers that we reference) but emphasize the physical
constraints that each theory base emphasizes.

Sarrus and Rameaux’s prediction that metabolic
rate should be proportional to body surface area (10),
and therefore to mass?®, was the first attempt to
understand how metabolic rate should be related to
body mass. Similarly, heat dissipation limit theory (54)
suggests that the daily energy expenditure of free-liv-
ing endotherms is constrained by the capacity of ani-
mals to dissipate metabolically produced heat.

Dynamic energy budget (DEB) theory (78-81) sepa-
rates the mass of an organism into “structure” and
“reserve,” where the latter is “...conceptualised as
stored polymers (fats, carbohydrates and lipids) in ‘blobs’
within individual cells that must be accessed by the struc-
ture from the surface of the blobs at the subcellular level”
such that “...the surface area interface of the reserve
with the structure is a fundamental geometrical driver of
the dynamics in DEB theory via the process of reserve
mobilisation” (Ref. 82, p. 563). Food is assimilated into
the reserve in proportion to surface area (volume2’3), and
the rate of mobilization of reserve depends on the sur-
face area/volume interface of the reserve (83). Thus, two
key assumptions of DEB are that assimilation and mobili-
zation are proportional to the area of a surface.

Fractal network theory (84—-88) proposes that the
distribution of resources (most likely oxygen; Ref.
83) through a space-filling outward-directed fractally
branching distribution network constrains the meta-
bolic rate to that which minimizes the energy required
to distribute resources. Thus, in fractal network theory
the geometry of the circulatory system dictates the
scaling of whole organism metabolic rate.

Gill-oxygen limitation theory (89-93) argues that the
allometric scaling of gill surface area sets the allomet-
ric scaling of oxygen uptake rate (and therefore aero-
bic metabolic rate) for water-breathing ectotherms,
because “...gill surface area cannot grow in three
dimensions and thus cannot keep up with the 3D
body that it supplies with oxygen” (93). Thus, in gill-ox-
ygen limitation theory the scaling of whole organism
metabolic rate is dictated by the geometry of the re-
spiratory exchange surface.

These physical geometric theories may provide a
proximate explanation for size-dependent patterns in
biology, though this is hotly debated (38—-40, 58, 72-74,
93-99). If they do provide reasonable descriptions of
how organisms work, then they might also provide
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reasonable predictions of the proximate responses of
animals to changes in their environment. The validity of
the physical constraints invoked by each of these theo-
ries can and should be debated, but such debates over-
look what is, at least for us, a critical shortcoming of all
these theories: their outputs are all evolutionarily inert.
That is, one could ask each of these theories to predict
the consequence of fourfold increase in extrinsic mortal-
ity, and unless the physical environment also changed
their model functions and outputs would remain
unchanged. In other words, these models ignore how
fitness (co)varies with evolutionary drivers that are unre-
lated to physiology. As biologists, we know life does not
work that way: shifts in the selective milieu induce evo-
lutionary change, organisms adapt such that their physi-
ologies and life histories are altered. We would argue
that there is a need to predict the evolutionary
responses of organisms to environmental change, and
that constraint-focused theories are ill suited to address
this urgent problem we confront.

Life History Optimization

Rather than making assumptions about physical con-
straints, an alternative approach is to ask: what meta-
bolic relationship might evolution favor? Life history
theory (100-107) provides an analytical framework for
understanding how different components of an organ-
ism’s life affect the overall performance of that orga-
nism. Life history theory considers how evolution has
shaped the way in which resources are allocated to
the various functions of life and often focuses on the
fitness consequences of different allocations, for
example, to growth versus reproduction, producing
many small versus few large offspring. One can use
this approach to construct models based on life his-
tory optimization that can be used to predict the distri-
butions of traits, be they metabolism, size, or their
covariance with each other (108-111).

In the context of life history evolution, describing a
combination of traits as “optimal” is shorthand for say-
ing that those are the trait combinations that yield the
highest fitness (112). The life history optimization
approach has been applied to the study of size-de-
pendent patterns in biology to predict, for example,
optimal age and size at maturity (108), the among-spe-
cies scaling of metabolic rate (and a range of other
traits) with body size (109, 113), the within-species scal-
ing of metabolic rate with body size (57, 112), and latitu-
dinal gradients in age at maturation and the scaling of
reproduction rate with body mass (114).

Before exploring the predictions of life history optimi-
zation with regard to metabolism, we must clarify a few
important issues. First, the massive size range that
exists among animals has exerted a strong gravitational
pull on considerations of metabolic scaling. Many of the
arguments for drivers of metabolic scaling emerge from
among-species comparisons, which may explain why
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many metabolic theories are evolutionarily inert: they
focus on the products of evolution (i.e., among-species
patterns) rather than the processes that yielded those
patterns. But, as Koztowski and others have pointed out
(e.g., Refs. 109, 111, 115), among-species relationships
provide very little information about within-species rela-
tionships. Accordingly, life history optimization incorpo-
rates within-species data and only makes predictions
about within-species metabolic scaling.

Second, there is a tendency to consider metabolic
scaling as a factor that is somehow separate from met-
abolic rate; indeed, physiologists often use different
terms to describe the relationship between metabo-
lism and size (i.e., metabolic scaling) and size-inde-
pendent metabolism (often termed “metabolic level”).
Distinguishing between metabolic level and scaling
can sometimes be useful, but we think this distinction
is somewhat artificial from both statistical and biologi-
cal perspectives. Statistically, a negative covariance
between metabolic level and scaling emerges as a
statistical artifact (116). Biologically, within-species met-
abolic scaling functions are essentially descriptions of
the ontogenetic trajectory of metabolism; breaking
this continuous trajectory into two separate compo-
nents seems odd to us. Thus, in our discussions of
metabolic scaling and life history optimization, we dis-
cuss both metabolic level and scaling but really con-
sider them to be two parts of a whole.

How then does life history optimization predict
that metabolism should evolve under environmental
change? The fulcrum upon which this model pivots
is the risk of mortality. Changes to mortality risk are
predicted to alter the fitness returns of life history
events such as reproductive maturity and the fitness
returns of rates such as growth and offspring pro-
duction (57). To illustrate for a single hypothetical
species, if mortality increases, life history optimiza-
tion would predict that faster growth rates and ear-
lier reproduction are favored. But to achieve faster
growth and earlier reproduction, the model predicts
that metabolic scaling becomes lower, as would the
scaling of the relationship between body size and
reproductive output (reproductive scaling). Finally,
the model would predict that, all else being equal,
metabolic level would increase and life span would
decrease. This example illustrates the strong con-
nection between metabolic traits and fitness com-
ponents: changing one changes all of them. Thus,
our model (57) would predict that anthropogenic
stressors that increase mortality rates will impact not
only the timing of life history events but also the
energy fluxes that drive these events. We should
therefore observe metabolic evolution when mortality
rates increase. For example, the model would predict
that fish species that have adapted to heavy fishing
regimes should show evolutionary changes in their
metabolic rates, from lower levels and higher scaling
to higher levels and lower scaling relative to unfished

species. This simple prediction awaits formal testing,
but it illustrates how changes in mortality regimes,
independent of change factors that might classically
be expected to alter physiology (e.g., temperature),
should generate evolutionary changes in rates of
metabolism. In other words, the model emphasizes
that metabolism, like any other trait, is evolutionarily
labile. We think that life history optimization there-
fore holds tremendous promise for predicting how
metabolism will coevolve with body size and life his-
tory with further anthropogenic change.

Whereas we favor the use of life history to understand
variation in metabolic scaling, many of the goals of life
history theory are shared by other theories. Each
seeks to understand growth and/or reproduction
( ), for example, but each approaches
the problem from a different perspective. The metabolic
theory of ecology (MTE) builds on fractal network theory
and posits that the metabolic rate of organisms is the
fundamental biological rate, which governs most pat-
terns in ecology (84, 122, 123). MTE predicts how meta-
bolic rate controls ecological processes at all levels by
determining resource uptake and allocation for survival,
growth, and reproduction. Pace of life (POL) theory
views behavior, physiology, and life history as intercon-
nected components of a single integrated phenotype
(120, 121). A slow POL is characterized by a long life
span, slow development, and delayed reproduction,
whereas a fast POL is characterized by a short life span,
fast development, and immediate investment in repro-
duction. POL is strongly related to and sometimes sim-
ply reiterates classic life history theory, but physiologists
seem to find POL more appealing because of its em-
phasis on physiological traits, based on the premise that
“...the interaction between environment and fitness is
mediated by behavioral and physiological responses,
including basal metabolic rate (BMR), field metabolic
rate (FMR), and testosterone...” (Ref. 120, p. 466). We
would argue that integrating POL into classic life history
theory would benefit both fields, as the former lever-
ages new methodological techniques while the latter
has an august history of deep thought and theoretical
sophistication.

Fundamentally, life history theory and POL approach
the problem from the perspective of optimization,
whereas theories like DEB and MTE approach the
problem from the perspective of constraint. To better
understand how these intellectual traditions interact
and exchange knowledge, we used a research weav-
ing approach (117) to synthesize the literature associ-
ated with each of these theories ( ). The
analysis reveals that citations are strongly clustered
by approach, although the optimization and con-
straint-based theories are not much more distinct than
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FIGURE 2. Research weaving approach
A research weaving (117) approach to understand the connections among life history theory, dynamic energy budget theory (DEB), pace of life theory (POLS),
and metabolic theory of ecology (MTE). The candidate set of publications were identified with the prominent seed publications for life history theory (Ste, Les,
Cha, Rof) (100-107), DEB (Koo, Nis) (78, 81, 118, 119), POLS (Zer, Ric) (120, 121), and MTE (Bro, Hou, Wes) (84, 122, 123), and each publication was coded to one of
these theories based on the papers it cites: a paper was coded to a theory if it cites the seed papers for that theory and no others. A—D show word clouds gen-
erated from the titles of papers associated with each theory. E and F show the citation network for the papers, colored by theory base (E) or publication date
(F). G and H show the frequency distributions of publications, colored by theory base. / shows a collaboration network for the most published authors in the
candidate set of publications, with nodes colored by the predominant theory base cited by that author.
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each of the theories within these categories (FIGURE
2E). Thus, although classic life history theory has se-
niority (FIGURE 2F), the more recent proliferation of
new theories (FIGURE 2, G AND H) with related goals
has given rise to a set of rather insular citation
(FIGURE 2E) and collaboration (FIGURE 21) networks.
The apparent divide between optimization and
mechanistic frameworks for understanding life histories
did not always exist. For example, R. A. Fisher, one of
the founders of modern evolutionary biology, recog-
nized the importance of physiology for the evolution of
the life history in 1930: “It would be instructive to know
not only by what physiological mechanism a just appor-
tionment is made between the nutriment devoted to
the gonads and that devoted to the rest of the parental
organism, but also what circumstances in the life history
and environment would render profitable the diversion
of a greater or lesser share of the available resources
towards reproduction” (Ref. 124, p. 43—44). And though

Volume 38 e November 2023 e www.physiologyonline.org

D’Arcy Thompson hoped for physical explanations “[f]
or the main features which appear to be common to all
curves of growth...” (Ref. 77, p. 152), he also mused on
the consequences of resource allocation: “After its last
moult the stick-insect puts on more weight for a while;
but growth soon draws to an end, and the bodily ener-
gies turn towards reproduction” (Ref. 125, p. 164), a
view that is a decidedly life history-based perspective
about allocation.

We view the emergence of distinctions between
subdisciplines as unhelpful. The separation of pace of
life syndromes and life history theory (FIGURE 2E)
seems particularly unnecessary and serves only to
draw physiologists away from classic life history theory,
and vice versa. An example serves to illustrate the
problems that such distinctions might introduce: past
life history work has considered the optimization of
complete energy budgets including rates of energy
allocation to, e.g., ingestion, metabolism, excretion,
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growth, and reproduction (e.g., Ref. 126), but the more
physiological elements of the budget (e.g., standard
metabolism) were incorrectly assumed to be inflexible
and therefore not subject to optimization (127). In con-
trast to this assumption, decades of physiological work
has demonstrated that metabolic rates are phenotypi-
cally plastic (e.g., Refs. 61, 62, 128), heritable (e.g., Ref.
129), and evolutionarily labile (e.g., Refs. 130, 131, 145).
In any scientific endeavor, there is a perennial risk that
one subfield will reinvent the wheel of another’s: the
lack of communication among subfields studying me-
tabolism and life history is to everyone’s detriment.

We think we need a little pluralism back: con-
straint-driven models would benefit from including
optimization. And we think that examining how
optimization changes in the face of absolute con-
straints (e.g., organisms cannot be infinitely large
or small or quick, and metabolic rates cannot be
zero or infinitely high) would add some necessary
limits. We conclude our review by drawing atten-
tion to a suite of tools that we think can be fruitfully
applied to understand the origin of allometric scal-
ing. Importantly, these tools can be usefully applied
to test hypotheses from the perspective of both
optimization and constraint.

For the sake of discussion, let us allow that metabo-
lism and its scaling with body mass is, at least partly,
the product of life history optimization. What would
that mean for the trait and our path forward for under-
standing it? We would argue that metabolic rate being
an outcome of optimization both simplifies and compli-
cates its evolution and simplifies and complicates our
understanding of the problem.

First, if metabolic scaling is a product of life history
optimization, then metabolic rate, like any other trait, will
evolve in response to selection (e.g., Refs. 130, 131, 145).
We can therefore use standard but powerful evolution-
ary approaches such as quantitative genetics and selec-
tion analyses to understand heritability and fitness
consequences of variation in metabolic rate (e.g., Refs.
129, 132, 133). Using these approaches avoids the need
to invoke strong, largely untested assumptions about
why metabolism might scale with size in the way it does;
instead, we can simply explore the fithess consequen-
ces and evolutionary constraints of a particular scaling.
Furthermore, life history theory has successfully pre-
dicted how and why traits might change with shifts in ev-
olutionary pressures; using this approach might provide
insights into how metabolic rate might evolve in
response to global change or anthropogenic pressures.
In contrast, most constraint-based explanations for meta-
bolic scaling tend to be more retrospective than pro-
spective. Notably, constraint-based theories offer few
predictions of how changes in the selective milieu will al-
ter metabolic rate specifically. For these reasons, using

life history optimization, to us at least, offers tremendous
promise for gaining a better understanding of metabolic
scaling now and how it will change in the future.

Quantitative genetics approaches can describe the
heritability of a trait very well (134-137) and explicitly
accommodate the multidimensionality of heritability.
Likewise, selection analyses formally link trait variation
to fithess outcomes (e.g., Ref. 138). Together, under-
standing the heritability of and selection on a trait
allows us to predict changes in the trait across genera-
tions, using either the multivariate breeders equation or
the Price—Robertson identity. But even these powerful
approaches wilt under the demand of predicting evolu-
tionary change across more than a few generations:
instead, we must turn to population genetics theory, an
intimidating theory base that requires parameters that
are often unknowable for most species other than
model microorganisms (e.g., the distribution of fithess
effects). Despite these limitations, we still believe that
using life history optimization as a framework for under-
standing metabolic scaling has the greatest promise.

Many discussions about metabolic rate, the pace of
life, and even constraints on metabolism can be made
soluble by approaching them with microevolutionary
tools. For example, the idea that metabolic rate is
strongly constrained to have a particular scaling
implies that there is strong stabilizing selection about
a particular scaling value (33); this is an invocation of
selection that can be tested empirically (139, 140).
Similarly, the idea that an evolutionarily favored out-
come is inaccessible because of constraint is testable
by examining whether genetic variation in that trait
exists and is aligned with selection (141, 142). Finally,
arguments about whether a slower or faster metabolic
rate is favored in different habitats or conditions and
whether different metabolic rates covary with differ-
ent life history strategies can be resolved with esti-
mates of selection on metabolic rate and estimates
of genetic covariance between metabolism and life
history traits, respectively. We believe that by
bringing to bear the venerable traditions of quanti-
tative genetics we can greatly simplify and formal-
ize conceptual arguments about how metabolic
rate (co)varies with other traits and fitness to under-
stand and predict its evolution.

Ironically, if metabolic scaling is the product of life
history optimization, then metabolic scaling is less
constrained from a mechanistic perspective but might
be more constrained from an evolutionary perspec-
tive. If we set aside the idea that metabolic scaling
shows the patterns it does because physics constrains
it to show those patterns, then metabolism is free to
vary much more than traditionally appreciated (57).
But, as Walsh and Blows (142) have emphasized, traits
are subject to a complex web of selection and genetic
covariances such that the capacity for traits to evolve
quickly is very limited. To explain, even if a trait is sub-
ject to strong selection, it may not be able to evolve
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because it genetically covaries (via pleiotropy, linkage
disequilibrium, and other equally ghastly genetic proc-
esses) with other traits that also have strong fitness
consequences. The more traits that covary with our
trait of interest, the more complex that multidimen-
sional trait is, and the more evolutionarily con-
strained that trait is likely to be. Worse, population
genetics, specifically Fisher’'s geometric model (124,
143, 144), tells us that the closer a trait is to its fitness
optimum, the less likely it is that any subsequent
mutation will be beneficial. As such, traits are far
less free to vary than we might intuit: changing a
trait might have manifold fithess consequences
such that it is evolutionarily static. As overwhelming
as this concept can seem, from it a simple conclusion
emerges: changing metabolism is unlikely to be selec-
tively neutral. Instead, we are better off viewing metab-
olism as a trait that is likely to be highly integrated with
a host of others such that changing metabolisms
changes fitness. Einstein famously said that God does
not play dice with the universe; neither would they be
likely to play dice with metabolism. This integrated view
of metabolic rate expands the scope but increases the
complexity of factors that might shape metabolism
and its scaling. Our model (57, 112) identifies the
components that we believe are key—reproduction,
growth, and life span—but it is important to recognize
that metabolic rate likely covaries with myriad factors
and univariate approaches will inevitably underestimate
the complexity of the evolutionary processes shaping
metabolic rate. M
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