Phytoplankton size-scaling of net-energy flux across light and biomass gradients

MARTINO E. MALERBA, CRAIG R. WHITE, AND DUSTIN J. MARSHALL

Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria 3800 Australia

Abstract. Many studies examine how body size mediates energy use, but few investigate how size simultaneously regulates energy acquisition. Furthermore, rarely energy fluxes are examined while accounting for the role of biotic and abiotic factors in which they are nested. These limitations contribute to an incomplete understanding of how size affects the transfer of energy through individuals, populations, and communities. Here we characterized photosynthesis-irradiance (P-I) curves and per-cell net-energy use for 21 phytoplankton species spanning across four orders of magnitude of size and seven phyla, each measured across six light intensities and four population densities. We then used phylogenetic mixed models to quantify how body size influences the energy turnover rates of a species, and how this changes across environments. Rate-parameters for the P-I curve and net-energy budgets were mostly highly correlated and consistent with an allometric size-scaling exponent of <1. The energy flux of a cell decreased with population density and increased with light intensity, but the effect of body size remained constant across all combinations of treatment levels (i.e. no size/population density interaction). The negative effect of population density on photosynthesis and respiration is mostly consistent with an active downregulation of metabolic rates following a decrease in per-cell resource availability, possibly as an adaptive strategy to reduce the minimum requirements of a cell and improve its competitive ability. Also, because an increase in body size corresponds to a less-than-proportional increase in net-energy (i.e. exponent <1), we propose that volume-specific net-energy flux can represent an important cost of evolving larger body sizes in autotrophic single-cell organisms.

Key words: geometric biology; Kleiber’s rule; light utilization; photosynthesis-irradiance (P-I) curve; phylogenetic mixed models; phytoplankton allometry; population density; respiration rates.

INTRODUCTION

Body size is perhaps the most definitive trait of a species. Size defines the rate at which organisms process energy and materials by imposing a suit of physical and chemical constraints on the individual (Calder 1984, Peters 1986). As such, most individual-level traits are correlated with size, such as growth (West et al. 2001), reproductive output (Enquist et al. 1999), and longevity (Marba et al. 2007). Thus, it is not surprising that many population-level processes also correlate with the size of the species. For instance, smaller species may show higher population densities (Damuth 1981, Peters and Wassenberg 1983, Enquist et al. 1998, Belgrano et al. 2002) and faster rates of population increase (Fenchel 1974, Blueweiss et al. 1978, Savage et al. 2004). These relationships determine the eco-evolutionary dynamics of a species and are also influential for broader community-level processes (Brown et al. 2004).

Almost a century ago, Huxley (1924), Kleiber (1932), and Brody et al. (1934) showed that many biological processes scale as power laws of the form:

$$R = a \times M^b$$

where R is some characteristic of an organism, such as the metabolic rate, M is the body size, a is the normalization constant, and b is the size-scaling exponent. Eq. 1 can be linearized as:

$$\ln R = \ln a + b \ln M.$$ \hspace{1cm} (2)

There are now many estimates of metabolic size-scaling exponents across all levels of biological organisation, from individuals, to populations, to entire ecosystems (Belgrano et al. 2002, Brown et al. 2004). Despite many theories on the effects of size on energy utilization (metabolism), most empirical studies only focus on size and energy use, and largely ignore energy acquisition (Gillooly et al. 2001, Nagy 2005). For instance, estimates for size-scaling exponents of whole-individual metabolism vary widely with systematic variations among taxonomic groups (insects are $>3/4$, birds are $<3/4$, and protists are <1), but overall they are mostly between 2/3 and 1 (West et al. 1997, 1999, Brown et al. 2004, Glazier 2006, 2009, Isaac and Carbone 2010). In contrast, less is known about the size-scaling of energy acquisition and considerable disparity exists between theoretical
predictions and empirical data (Pawar et al. 2012, Rall et al. 2012). Clearly the overall effect of size on the energy budget of an organism will depend on how size affects both energy gain and use (together, net-energy gain). Yet, our understanding of size-dependent net-energy gain remains surprisingly poorly resolved.

The rate at which organisms use energy also depends on environmental conditions. For instance, predators often consume prey at a rate that depends not only on their size but also on a range of variables, such as prey availability (DeLong and Vasseur 2012, DeLong 2014), temperature (Englund et al. 2011, Rall et al. 2012), and density-dependent resource competition (DeLong and Hanson 2009b, a, Ghedini et al. in press). Ignoring environmental variables is likely to generate an incomplete understanding of the role of size, especially because many ecological rates (such as energy flux) change non-linearly across environmental gradients. In such cases, representing species using point-estimates will limit our ability to extrapolate beyond current conditions. An alternative approach to overcome this limitation is to focus on “function-valued traits” (sensu Stinchcombe et al. 2012), where parameters of (non-linear) functional responses are estimated across environmental gradients. Model parameters can be used to predict consumption rates for each species accounting for one or more variables. Function-valued approaches require more data, but offer greater comparability among studies, enhanced statistical power and flexibility, and can characterize the full range of environmental responses of a species (Stinchcombe and Kirkpatrick 2012). Thus, in recent years there has been an increase in popularity of studies using function-valued approaches (Savage et al. 2004, McGill et al. 2006, Violle et al. 2007, Stinchcombe et al. 2012, Goolsby 2015).

Photosynthesis is the engine that provides energy and organic matter for virtually all natural food webs on Earth. In particular, phytoplankton species are key primary producers, estimated to account for approximately half of the total carbon fixation on the planet (Field et al. 1998). Phytoplankton species range from 1 to $10^6 \mu m^3$ in cell volume and represent an excellent example for the key importance of body size for the ecology and physiology of an organism (Maranon 2015). Size profoundly influences the performance of phytoplankton species across environmental gradients of light (Schwaderer et al. 2011, Edwards et al. 2015), nutrients (Litchman et al. 2007, Edwards et al. 2012, Maranon et al. 2013), and temperature (Thomas et al. 2012). While previous studies examined the role of size on either energy gain and/or energy use (Taguchi 1976, Blasco et al. 1982, Finkel et al. 2004, Lopez-Urrutia et al. 2006, Maranon 2008, Huete-Ortega et al. 2012, Lopez-Sandoval et al. 2014), few have investigated size-effects on the net-daily energy budget of a species, as the difference between net-photosynthesis during the day and respiration at night, integrated over the 24-h photoperiod. It seems obvious that the productivity of an organism will depend on how size simultaneously affects both energy gains and utilization – i.e., the net-energy flux. Also, the energy flux of a cell changes as a non-linear function of light availability, which depends not just on the external light source but also on the shading effect due to population density in solution (Huisman and Weissing 1994). Hence, a comprehensive analysis of the effects of size on daily net-energy flux requires characterizing multiple functions for how respiration and net-photosynthesis change across environmental gradients of light and population density.

The aim of this study is to investigate the effect of body size (measured as cell volume) on net energy flux of species across environmental conditions of light intensity and population density. To this end, we used 21 phytoplankton species from 7 phyla spanning 4 orders of magnitude in cell volume, all cultured and measured using identical protocols. Two replicate samples for each species were measured across a fully crossed experimental design of 6 light intensities (ranging from 0 to 250 at increments of 50 μm quanta m$^{-2}$ s$^{-1}$) and 4 population densities (standardized by optical density), yielding a total of 24 light-density combinations for each of the 21 species. At each combination, energy rates were analyzed by fitting saturating photosynthesis-irradiance (P-I) curves.

MATERIALS AND METHODS

Phytoplankton cultures and experimental design

Monoclonal batch cultures of the 21 species used in this experiment were sourced from the Australian National Algae Culture Collection (ANACC; see Fig. 1 for species names and strain codes) and reared in standard F/2 media, prepared with 0.45 μm filtered seawater (Guillard 1975). All species were cultured in aseptic 75 cm^2 plastic cell culture flasks (Corning®, Canted Neck, Nonpyrogenic) and grown in a temperature-controlled room at 21 ± 2°C with a 14–10 h day-night cycle with a light intensity of 150 μm m$^{-2}$ s$^{-1}$. Species were handled aseptically with sterile materials under a laminar-flow cabinet (Gelman Sciences Australia, Model CF23S, National Association of Testing Authorities certified). Cell size was estimated by measuring at least 100 cells per species with optical light microscopy. Photos at 400x were taken of lugol-stained samples (2%) after loading 5 μL on a slide gently covered with a cover slip. Cell area was calculated with ImageJ and Fiji (version 2.0; Schindelin et al. 2012) and cell biovolume was calculated by assigning the most appropriate geometric shape for each species, as recommended by Sun and Liu (2003).

To evaluate any density-dependent effects, samples for each species were standardized across a gradient of population densities. The four levels of biomass concentrations were achieved by diluting mother cultures until reaching blank-corrected optical density values of 0.04.
bicarbonate (2 mM) was added to the media to ensure photosynthesis and oxygen evolution were not limited by carbon availability. All SDR were placed horizontally under the light source, to avoid cell deposition on top of the oxygen sensor at the base of the vial. Samples were randomly allocated to the top row of the SDR, while three blanks per reader were placed in the bottom rows. VO₂ measurements were taken at six light regimes (from 0 to 250 µm quanta m⁻² s⁻¹ at increments of 50), randomizing the order of light intensities and with dark periods separating each two light periods. Per-cell VO₂ (VO₂cell; units µmol O₂ min⁻¹ cell⁻¹) was calculated by dividing VO₂ by the total number of cells in the vial, measured by manual cell counting (Neubauer Improved hemocytometer, Bright-line double ruled, Pacific Lab).

Statistical analysis

Non-linear photosynthesis-irradiance (P-I) curves.—Photosynthesis-irradiance (P-I) curves of VO₂cell across 6 light intensities (E) were analysed by fitting curves by Platt et al. (1980) of the form:

\[
\frac{\text{VO}_2}{\text{E}} = P_{\text{max,}b} \left(1 - e^{-(\alpha_{\text{b}}(E-E_{c,b})/P_{\text{max,}b})}\right)
\]

(4)

where \(s\) and \(b\) indicate the 21 species and the four biomass concentrations, respectively. \(P_{\text{max,}b}\) is the maximum per-cell rate of oxygen production (units of µmol O₂ min⁻¹ cell⁻¹), \(\alpha_{\text{b}}\) is the initial slope of the curve (units of µmol O₂ min⁻¹ cell⁻¹ (µmol quanta s⁻¹ m⁻²)⁻¹), \(E_{c,b}\) is the compensation photon flux (units µmol quanta s⁻¹ m⁻²). The mean respiration of a cell (Respₐ,b) is the Y-intercept of the curve (units of µmol O₂ min⁻¹ cell⁻¹) and can be calculated as:

\[
\text{Resp}_{s,b} = P_{\text{max,}b} \left(1 - e^{-(\alpha_{\text{b}}E_{c,s,b})/P_{\text{max,}b}}\right)
\]

(5)

Alternative models of P-I curves (Eq. 4) including an inhibition term as an additional negative exponential function were also fitted, but likelihood ratio test between the two nested models showed little support for any light inhibition in the data. Non-linear P-I curves were calibrated using package nls in statistical software R (Pinheiro et al. 2016, R Core Team 2016). All models were visually inspected for goodness of fit and ensured to successfully converge.

Phylogenetic mixed models.—After fitting P-I curves to quantify the non-linear effect of light intensity on metabolic rates to 84 combinations of species (\(n = 21\) and population density (\(n = 4\)), linear phylogenetic mixed models (Lynch 1991, Housworth et al. 2004) were used to analyse the effect of cell volume on each P-I parameter, on cell respiration, and on net-energy rates. We used the approach described by Kilmer and Rodriguez (2017) to calculate an attenuation factor (η) and correct for the
slope attenuation of having measurement error in cell volume, as follow: \(\eta = \frac{\text{var}(X)}{\text{var}(X) + \text{var}(\epsilon_X)} \), and \(b = \frac{\alpha}{\eta} \) where \(\text{var}(X) \) is the variance of cell volume across all species, \(\text{var}(\epsilon_X) \) is the variance around the mean cell volume of each species (the observation error), \(b \) is the size-scaling exponent without accounting for observation error around cell volume, and \(a \) is the size-scaling exponent adjusted for observation error on cell volume [hence \(b \approx b \), when \(\text{var}(\epsilon_X) \approx 0 \)]. We found that \(\eta = 0.9914 \), which means that measurement error of cell volume accounted for \(<1\% \) of the total variance. We therefore divided all size-scaling exponents by 0.9914 to calculate size-scaling exponents adjusted for observation error on cell volume. Also, controlling for phylogenetic similarities in the data is necessary because traits of related species may be correlated and not statistically independent, especially for phytoplankton species (Connolly et al. 2008, Nakov et al. 2014). This dependency violates the assumption of most statistical tests and need to be incorporated in the variance structure. Therefore, univariate phylogenetic mixed models were implemented following Hadfield (2010) to analyze the effects of cell size, population density, and their interaction on metabolic rates. If credible intervals for the interaction coefficient overlapped 0, models were re-fitted including only main effects.

We analyzed the oxygen evolution of a cell (units \(\mu\text{mol O}_2 \text{ h}^{-1} \text{ cell}^{-1} \)) by fitting phylogenetic mixed models to each of the P-I parameters (i.e. \(P_{\text{max}} \), \(E_c \), and \(\sigma \)). The uncertainty associated with fitting non-linear P-I curves to observations (Eq. 4) was included by associating measurement error variance to each estimated P-I parameter. Then, we analyzed the energy use of a cell by fitting phylogenetic mixed models to per-cell daily net-energy production and per-cell daily respiration. Both energy rates were calculated by transforming the units of the P-I parameters from oxygen evolution (\(\mu\text{mol O}_2 \text{ d}^{-1} \text{ cell}^{-1} \)) to calorific energy (Joules d\(^{-1} \) cell\(^{-1} \)) using the conversion of \(512 \times 10^{-15} \) J \((\mu\text{mol O}_2)^{-1} \) from Williams and Laurens (2010), which assumes a cell macromolecular composition of 35% protein, 35% carbohydrates, 25% lipids, and 5% nucleic acid. P-I curves (Eq. 4) with energy-converted parameters where then used to calculate per-cell daily net-energy production (units Joules d\(^{-1} \) cell\(^{-1} \)) as the difference between net-photosynthesis during the day and respiration at night, assuming 16:8 photoperiod and light intensities of either 50, 100, 150, 200, and 250 \(\mu\text{mol} \) quanta m\(^{-2} \) s\(^{-1} \). Similarly, per-cell daily respiration rates (units Joules d\(^{-1} \) cell\(^{-1} \)) were calculated assuming 24 h of darkness.

The phylogeny of the species was included in the variance structure of the model as a random effect and was compiled from the Tree of Life Web Project (Maddison et al. 2007) using the R packages rotl (Michonneau et al. 2016) and MCMCglmm (Hadfield 2010). The length of each branch is proportional to the taxonomic relatedness from the node where the branch leads. Phylogenetic heritability is the proportion of variance associated with the random effect of the phylogeny (between 0 and 1) and is equivalent to the parameter \(\lambda \) (Hadfield and Nakagawa 2010), which is commonly used as a metric of the degree of phylogenetic correlation in the data (Pagel 1999, Freckleton et al. 2002). When \(\lambda = 0 \), traits are phylogenetically independent, while when \(\lambda = 1 \) traits are phylogenetically correlated as expected when assuming evolution to follow Brownian motion. However, the tree used here also suffers from two nodes that have not been fully resolved (polytomy; Fig. 1). This is probably due to their close relationship and the limitations on diatom taxonomy. To confirm our results, we repeated the analysis by replacing the phylogenetic variance structure with taxonomic-independent species-specific random effects and confirmed that this did not change any of the conclusions. Finally, because there are multiple observations for species, a second species-specific random effect was initially included in our full model. However, model selection with deviance information criterion (Hooten and Hobbs 2015) selected against this second random effect and it was therefore removed from the final model.

Every dataset was sampled \(1.3 \times 10^{9} \) times with Metropolis-Hastings sampler, following \(3 \times 10^{5} \) iterations for burn-in, and a thinning of 1000, using software R with package MCMCglmm (Hadfield 2010; R Core Team 2016). All priors for the parameters were uninformative from an inverse Wishard distribution. To monitor successful convergence, we inspected the iterated history, density plot, and ensured Geweke z-score between \(-2 \) and \(2 \) (Geweke 1992). Packages coda ggplot2 (Wickham 2009), (Plummer et al. 2006), ggmcmc (Marin 2015), and PerformanceAnalytics (Peterson and Carl 2014) were also used for statistical analyses and plots. Mean and credible intervals were calculated from the posterior distributions of each parameter.

Partial residuals were used to calculate the unique contribution of cell size on metabolic rates while controlling for the effects of population density, as:

\[
(Y_{\text{Obs},i} - Y_{\text{Pred},i}) + \beta \times \text{size}_i + \alpha + \theta \times \text{conc} \quad (6)
\]

where \(\alpha \) and \(\beta \) are the intercept and slope of size, \(\text{size}_i \) is the cell volume of \(i \)th observation, \(\theta \) is the coefficient for population density, \(\text{conc} \) is the mean value of population density in the data, and \(Y_{\text{Obs},i} \) and \(Y_{\text{Pred},i} \) are the observed metabolic rates and the metabolic rates predicted by the phylogenetic mixed model, respectively. Analogous calculations were made to determine the effects of population density while controlling for size (i.e. replace \(\text{size}_i \) with \(\text{size} \) and \(\text{conc} \) with \(\text{conc}_c \)).

Results

P-I parameters

Cell volume explained a large proportion of the variation in P-I curve parameters among species (Fig. 2; Table 1). Maximum photosynthetic rate (\(P_{\text{max}} \)) and initial slope of the P-I curve (\(\alpha \)) were highly positively
DISCUSSION

Almost every parameter describing photosynthesis, respiration, and net-energy flux of a cell scaled allometrically with exponents of <1 with cell size. The only exception was compensation light intensity (I_C) and between Fig. 3A, C and between Fig. 3B, D). This explains why the break-even light intensity where respiration equals photosynthesis (I_C) was not affected by either cell size or population density (Table 1): since per-cell net-energy production was positively correlated to per-cell respiration ($r = 0.84$), their difference would tend to remain constant across all levels of cell size and population density (Table 1). Finally, all interaction terms between cell size and population density overlapped 0 for all rates of net-energy production and respiration: this implies that the effect of size was constant across all levels of population densities (Fig. 3; Table 1).

Discussion

Almost every parameter describing photosynthesis, respiration, and net-energy flux of a cell scaled allometrically with exponents of <1 with cell size. The only exception was compensation light intensity (i.e. the break-even light intensity where respiration equals photosynthesis, or net-photosynthesis equals 0: E_C), indicating that the minimum amount of light required to maintain cell energy is similar across a 3 orders of magnitude size range. This is because larger cells produced more energy but also had higher energy costs due to respiration. Furthermore, increasing population density or decreasing light irradiance systematically reduced photosynthesis, respiration, and the net-energy production of a cell (i.e., different intercepts), but did not alter any of the size-scaling exponents (i.e., same slopes among allometric lines).

Empirical studies across all major phytoplankton phyla showed that per-cell rates of nutrient assimilation mostly scale isometrically with cell volume, while the minimum nutrient requirement for growth scales allometrically at an exponent of <1 (Maranon et al. 2013, Maranon 2015). Combining these two size-scaling exponents yields the prediction that volume-standardized nutrient uptake does not change with size and that larger
TABLE 1. Mean estimates and credible intervals for fixed effects and phylogenetic heritability coefficients (λ) of all mixed models for P-I curve parameters and for per-cell daily net-energy flux (J d$^{-1}$ cell$^{-1}$). P-I parameters are maximum per-cell rate of oxygen production (P_{max}), initial slope of the curve (α), and compensation photon flux (E_c; see Fig. 2 for parameter units). Per-cell respiration is calculated assuming 24 h of darkness (transformed in the model as \log_e (–per-cell respiration)). Rates of per-cell net energy production are calculated as the difference between respiration and photosynthesis assuming 16:8 photoperiod and light intensities (L) of either 50, 100, 150, 200, or 250 μmol quanta m$^{-2}$ s$^{-1}$. All size-scaling coefficients were adjusted for the effect of observation error on cell size using an attenuation factor (g) of 0.9914 (see Phylogenetic mixed models in Materials and Methods section). All interaction terms between log$_{10}$(cell volume) and Pop. density were overlapping 0 and were therefore removed from the final model (see Phylogenetic models in Materials and Methods section).

<table>
<thead>
<tr>
<th>P-I parameters</th>
<th>Intercept log$_{10}$(cell volume)</th>
<th>Pop. density</th>
<th>Phylo. heritability (λ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loge ($P{\text{max}}$)</td>
<td>-13.17 ($-14.93; -11.27$)</td>
<td>0.65 ($0.45; 0.87$)</td>
<td>-0.008 ($-0.010; -0.006$)</td>
</tr>
<tr>
<td>Log$_e$ (α)</td>
<td>-16.95 ($-19.34; -14.35$)</td>
<td>0.67 ($0.39; 0.92$)</td>
<td>-0.012 ($-0.015; -0.010$)</td>
</tr>
<tr>
<td>E_c</td>
<td>1.33 ($-1.06; 3.11$)</td>
<td>0.05 ($-0.37; 0.47$)</td>
<td>0.008 ($-0.017; 0.031$)</td>
</tr>
<tr>
<td>Daily per-cell net-energy</td>
<td>Log$_e$ (Resp.)</td>
<td>-12.39 ($-14.69; -9.87$)</td>
<td>0.73 ($0.43; 0.99$)</td>
</tr>
<tr>
<td>Log$_e$ (L = 50)</td>
<td>-11.83 ($-14.28; -9.69$)</td>
<td>0.65 ($0.37; 0.93$)</td>
<td>-0.012 ($-0.014; -0.008$)</td>
</tr>
<tr>
<td>Log$_e$ (L = 100)</td>
<td>-11.53 ($-13.95; -9.13$)</td>
<td>0.64 ($0.39; 0.91$)</td>
<td>-0.009 ($-0.011; -0.006$)</td>
</tr>
<tr>
<td>Log$_e$ (L = 150)</td>
<td>-11.32 ($-13.41; -9.07$)</td>
<td>0.64 ($0.42; 0.88$)</td>
<td>-0.008 ($-0.010; -0.005$)</td>
</tr>
<tr>
<td>Log$_e$ (L = 200)</td>
<td>-11.24 ($-13.21; -9.34$)</td>
<td>0.63 ($0.41; 0.85$)</td>
<td>-0.007 ($-0.010 -0.005$)</td>
</tr>
<tr>
<td>Log$_e$ (L = 250)</td>
<td>-11.29 ($-13.31; -9.41$)</td>
<td>0.64 ($0.39; 0.84$)</td>
<td>-0.007 ($-0.010; -0.004$)</td>
</tr>
</tbody>
</table>

FIG. 3. Effect of cell volume and (B, D) population density on per-cell net energy flux (A, B) and per-cell respiration (C, D; units J d$^{-1}$ cell$^{-1}$). Daily rates were calculated by assuming 16:8 photoperiod (see Phylogenetic mixed models section in Materials and Methods), with net-energy flux calculated as a function of light intensity, from 50 to 250 μmol quanta m$^{-2}$ s$^{-1}$. Rates of energy use during dark respiration are all <0; in order to allow log-transformation in the model, per-cell respiration rates are calculated as \log_e (–per-cell energy use). All relationships were corrected for the effects of other explanatory variables in the model by computing model partial residuals (see Eq. 6). Mean coefficients (\pm 95% credible intervals) for the effects of cell volume and population density are also shown (see Table 1). Population densities in the experiment were standardized among species using optical density values of 0.04, 0.12, 0.28 and 0.4, here represented as percentages of 10%, 30%, 70%, and 100%, respectively. See Table 1 for model coefficients.
cells require less nutrients per unit volume. Thus, increasing cell size should allow the assimilation of nutrients at rates far greater than their minimum requirements and can therefore represent an evolutionary advantage. However, our results and those from others Finkel et al. (2004) indicate that phytoplankton net-photosynthesis scales at an exponent of <1, such that increasing cell volume leads to a less-than-proportional rate at which energy can be produced and utilized. Hence, while species with larger cells are advantaged by obtaining more nutrients than required, they are also limited by their volume-specific rates of net energy production. This may explain why smaller unicellular species often show faster maximum population growth rates than larger species (Savage et al. 2004, but see also Maranon 2015 for unimodal size-scaling of growth rate). The ability of a species to store energy can also mediate the role of cell size on the fitness of a species (Grover 1991, 2011). Lipids and carbohydrates are the main sources of energy storage in phytoplankton: Carbohydrates are accumulated as starch-like granules and are more energy efficient, but also take up more intracellular space than lipids (up to 20% of cellular space in small cell species; Finkel et al. 2016). While there is considerable variability on the size-scaling exponent of stored energy among taxonomic groups (Hitchcock 1982, Moal et al. 1987, Finkel et al. 2016), reduced intracellular space of smaller cells may limit the amount of stored carbohydrates and affect their ability to endure periods of darkness or low resource regimes.

Here we found a negative effect of population density on per-capita rates of photosynthesis and respiration. This finding is in agreement with several other studies showing a reduction in metabolic rate in response to increasing population density for both autotrophic and heterotrophic species (phytoplankton: DeLong and Hanson 2009a,b, other invertebrates: DeLong 2014, Ghedini et al. in press, fish: Nadler et al. 2016). While previous studies involved isolated species, we now show that such negative effect equally applies across a taxonomically diverse community of 21 species. Moreover, our results indicate that the strength of this negative effect is proportional across species of widely different body sizes. Specifically, increasing population density 10 times (from 10% to 100%) decreases per-capita net energy flux and respiration by about half an order of magnitude. Increasing population density also decreases the quality and quantity of available photosynthetically-active radiation (between 400 and 700 nm), as light is transmitted through suspended phytoplankton cells (Holmes and Smith 1977), potentially explaining this photosynthetic downregulation. However, this does not explain why population density also decreases respiration rates in the dark. Especially because we found no relationship between the respiration rate of a cell and its previously experienced light intensity ($F_{1,818} = 1.53, P = 0.2$). Instead, the effects of population density are mostly consistent with an active downregulation of metabolic rates following a decrease in per-capita resources. DeLong and Hanson (2009a) previously found density-dependent regulation of metabolic rate in four unicellular organisms. It is therefore possible that reducing metabolic rates at increasing population densities can represent an adaptive strategy to reduce the minimum requirements of a cell and improve its fitness when competing for limiting resources.

Theoretical models describing the bio-optical properties of autotrophic cells predict a decrease in size-scaling exponent with decreasing light intensities, as larger cells can be more affected by low light conditions than smaller cells, due to higher “package effect” (i.e. intracellular self-shading reducing the capacity of pigments to harvest light; Finkel and Irwin 2000, Finkel et al. 2004, Mei et al. 2009). Instead, our results failed to detect any differences in the size-scaling exponents across light intensities between 50 and 250 μmol photon m$^{-2}$ s$^{-1}$ (i.e. only intercepts differed across environmental conditions). However, notice that most previous studies on the effects of light intensity on size-scaling exponents focused exclusively on photosynthetic rates, without also including the contribution of respiration rates on the net-photosynthesis of a cell. The dominant source of respiration in most autotrophic organisms is proportional to their growth and photosynthetic rates [due to oxygen-consuming and energy-dissipating pathways such as photorespiration and Mehler reaction (Langdon 1993, Lewitus and Kana 1995, Williams and Laurens 2010)]. If self-shading leads to reductions in both photosynthesis and respiration, we would expect some degree of compensation in net-photosynthetic rates and also in the variability of size-scaling exponents across light intensities.

Size-scaling exponents for photosynthesis and respiration are usually calculated by representing each species as point-estimates, standardized as either measured in the dark or after ensuring optimal light regimes for each species (e.g. Maranon et al. 2007, Lopez-Sandoval et al. 2014). Our alternative approach of estimating size-scaling exponents after fitting P-I curves was motivated by concerns that traditional point-estimates might provide poor understanding of non-linear relationships between energy rates and light and biomass levels (Kingsolver et al. 2001, 2014, Stinchcombe et al. 2012). Yet ironically, our study indicates that calculating size-scaling exponents by measuring each species only once can provide equally reliable size-scaling exponents in the most time- and resource-efficient way. This is because we found that rates of energy production and respiration were highly correlated and they all produced very similar size-scaling coefficients.

The size-scaling exponents for primary production and respiration documented here are in agreement with studies by Finkel et al. (2004), Lopez-Urrutia et al. (2006), Gillooly et al. (2001), and Brown et al. (2004). However, they also contradict a number of recent studies reporting isometric scaling exponents for phytoplankton metabolic rates, both in the field (Maranon et al. 2007, Huete-Ortega et al. 2012) and in the laboratory (Lopez-Sandoval
et al. 2014). Differences in statistical techniques could partly explain these conflicting results: exponents close to 1 were calculated using Reduced Major Axis (RMA) techniques. Slopes calculated with RMA have higher exponents than traditional ordinary least squares (OLS), as $slope_{RMA} = slope_{OLS}/\sqrt{r^2}$ with r as the correlation coefficient. Thus, $slope_{RMA}$ approaches ∞ as r approaches 0 (Griffiths 1998). Furthermore, given that cell mass scales allometrically at <1 with cell volume in phytoplankton species (Menden-Deuer and Lessard 2000), size-scaling exponents based on mass will be higher than those based on volume. Here cell size was measured as volume, whereas most previous phytoplankton allometric studies used cell mass. Another explanation could be that previous studies measured photosynthetic rates as carbon fixation using radiolabelling and 14C isotopes, while we used bio-optical methods to track oxygen evolution. Both methods have limitations: the former is less sensitive to small oxygen changes, while the latter cannot account for remineralization and depends on laboratory protocols (e.g. incubation time). Estimates of primary productivity among methods remain poorly comparable (reviewed in Regaudie-de-Gioux et al. 2014). Finally, the discrepancy between our studies and previous analyses could also be due to the incorporation of phylogenetic information in our analysis. Previous studies did not correct for taxonomic correlation and this will overestimate degrees of freedom and increase type I error in the analyses. However, the tree used here suffers from two unresolved nodes, which will need to be resolved to fully confirm all taxonomic correlations among species.

The present study showed that increasing body size lead to a reduction in the volume-specific net-energy flux of autotrophic unicellular species, potentially representing an additional evolutionary cost of increasing cell size. This is consistent with small species often dominating in low-light environments. However, phytoplankton species range over nine orders of magnitude in cell volume, which means that evolved larger cells must have other non-energetic evolutionary benefits (e.g. lower grazing susceptibility, higher ability to store nutrients). Moreover, we showed that the energy flux of a cell decreased with population density, as both net-photosynthesis and respiration are downregulated as per-capita resources decrease. As already proposed by DeLong and Hanson (2009a), we also believe that density-dependent metabolism could represent an important and widespread strategy to minimize energy requirement and improve the ability of an individual to compete for resources. Finally, it is increasingly apparent that global temperature increases are reducing body sizes worldwide, particularly of aquatic organisms (Daufresne et al. 2009, Forster et al. 2012, Peter and Sommer 2012). While the mechanisms driving this decrease in body size are poorly understood, it is likely to involve the higher volume-specific energy production of smaller organisms. If this is the case, we would predict that future phytoplankton communities should display higher mass-specific net-energy flux and potentially improve current rates of ocean carbon sequestration.

ACKNOWLEDGMENTS

We thank handling editor and anonymous reviewers for their insightful comments. We also thank Dr Maria del Mar Palacios Otero, Lucy Chapman, Belinda Comerford, Annie Guillaume, and staff at the Australian National Algae Culture Collection (ANACC) for their help with laboratory procedures. We also thank the Australian Research Council for financial support. The authors declare no conflict of interest.

LITERATURE CITED

Maranon, E., P. Cermeno, J. Rodriguez, M. V. Zubkov, and R. P. Harris. 2007. Scaling of phytoplankton photosynthesis